Erdélyi-Kober fractional integrals on Hardy space and BMO

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators

In recent years, a remarkably large number of inequalities involving the fractional q-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-Kober fractional q-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated with Kobe...

متن کامل

Approximation of the Erdélyi-Kober Operator with Application to the Time-Fractional Porous Medium Equation

This paper describes a method of approximating equations with the Erdélyi–Kober fractional operator which arise in mathematical descriptions of anomalous diffusion. We prove a theorem on the exact form of the approximating series and provide an illustration by considering the fractional porous-medium equation applied to model moisture diffusion in building materials. We obtain some approximate ...

متن کامل

Hardy Inequalities for Fractional Integrals on General Domains

We prove a sharp Hardy inequality for fractional integrals for functions that are supported on a general domain. The constant is the same as the one for the half-space and hence our result settles a recent conjecture of Bogdan and Dyda [2].

متن کامل

Mean value theorems for Local fractional integrals on fractal space

In this paper, by some properties of Local fractional integral,we establish the generalized Mean value theorems for Local Fractional Integral.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2020

ISSN: 0717-6279

DOI: 10.22199/issn.0717-6279-2020-03-0041